NOTATION

’_f temperature, T= (T - TW)/TO, dimensionless temperature; E concentration of absorbate in solution
(mass fractlon) Ty, wall temperature; d, b, constants determining state of saturation on liquid—vapor inter-
face; C=(C — dTy, — b)/Cy, dimensionless concentration; y=y¥5; x=x"q/6’= (1/RePr) - (xB); Le=a/D, Lewis
number; Pr=yp/g, Prandtl number; Re=Vs/y, Reynolds number; a, thermal diffusivity; D, diffusion coefficient;
ry, heat of absorption; cp, spe01f10 heat; A, thermal conductivity; », viscosity; p, density of solution; gp, gm,
dimensional heat and mass fluxes, respectively; T ave Cay» average values of temperature and concentration
over cross section of film; Qpg, Qhyw, dimensionless heat fluxes through film surface and solid wall; Quy,
dimensionless mass flux through film surface.

LITERATURE CITED
1. V. E. Nakoryakov and N. I. Grigor'eva, Inzh.-Fiz. Zh., 32, No. 3 (1977).

THEORY OF REACTION DIFFUSION FOR BODIES OF PLANE,
CYLINDRICAL, AND SPHERICAL SYMMETRY

Yu. M. Grigor'ev, S. L. Kharatyan, UDC 669:532.72
Z 8. Andrianova, A. N. Ivanova,
and A G. Merzhanov

A solution of the nonstationary Stefan problem is presented for bodies of plane, cylindrical,
and spherical symmetry in application to processes of diffusion interaction between metals
and a gaseous oxidative medium.

The kinetics of metal interaction with gases is usually studied (see [1], for instance) by gravimetric (by
the change in specimen weight), volumetric (by the quantity of absorbed gas), metallographic (by the periodic
measurements of the thickness of the reaction-product films), and calorimetric (by the quantity of heat liberated
by the reaction) methods. Hence, specimens of a different geometric shape (plates, wires, spherical particles,
etc.) were used in tests. In this connection, it is interesting to analyze the question of the influence of the
geometric shape of the specimens used on the regularity of reaction diffusion. Some results of such an analysis
based on an assumption of a stationary distribution of the reagent concentration in the product film are con-
tained in [2-4]. This question is analyzed in this paper in the general case of nonstationarity of mass transfer
through the reaction-product film.

§1l. Statement of the Problem

Within the framework of the classical theory of reaction diffusion [5], whichis based on the assumption of
the limiting role of transfer of the gaseous reagent through the reaction-product film, the process is described
by a nonlinear Stefan problem, which has the following form for bodies of finite size but different geometric
shape

ot ox2 ' x Ox
t=0c=rc,— 2“52 (R—x), R—r=e &R, 1.2)
x=R ¢c=¢, (1.3)
X=1r ¢=20, (1.4)
d(R—r) dc |
L =D . 1.
T O | emr (1.5)
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Here n is the symmetry parameter of the domain, n=0 is a plate, n=1 is a cylinder, and n=2 is a sphere.
Condition (1.2) corresponds to the existence of a thin film on the specimen surface at the initial instant.

The following assumptions were made in writing the system (1.1)—(1.5)':

1) Dissolution of the reagent in the metal is not considered (the solubility of the gas in the metal is
assumed to be zero, and the whole interaction reduces to the formation of the product film);

2) the change in specimen volume during film growth is not taken into account (the possibility of such an
assumption while examining the interaction between metals and gases results from an analysis of results in

[61);
3) the coefficient of diffusion is assumed independent of the concentration of reagent.

It is easy to obtain

R
AH, = % jx"AH(c) dx, (1.6)

R
Am, = Rl'_”g x"Am(c)dx (1.7

r

for the quantity of liberated heat AHg per unit specimen surface, and the mean surface increment in mass Amg
due to the formation of the product film. A linear approximation for the quantities AH(c) and Am(c),

AH (¢) = AH, — (AH, — AH,) 5% (1.8)

]

¢y —Cy
Am, .

4
can be used to evaluate the integrals in (1.6 and (1.7). The relationship (1.8) results from calorimetric mea-

surements on the carbidization and nitriding of transition metals [7] and reflects the presence of a linear nature

of the dependence of the magnitude of the thermal effect of the reaction on the nonmetal concentration in the
film within the limits of the homogeneity domain of the reaction-product phase.

Am(c) = (1.9)

The self-similar solution of the problem (1.1)-(1.5) is widely known (see {8], for instance) for plane
symmetry. There are no such solutions for cylindrical and spherical symmetry. Hence, in order to obtain
computational empirical formulas for the rate of film growth, the heat liberation, and gain in weight of speci-

mens of different geometric shape, the system (1.1)-(1.7), converted to dimensionless form, was solved on an
electronic computer. In dimensioniess form (1.1)-(1.7) are rewritten as follows:

flzj:l+ﬁa_“,1_zgg<1, (1.10)
ot @ |t ¢
=0 pel—1TF Z e, (1.11)
Z
E=1 q=1, (1.12)
E=1—2 n=0, (1.13)
z _ 1 oy (1:14)
T Mo a& |tz
!
Q=) M+ Q& (1.15)
1—Z
1 .
o = (4 JE. (1.16)
T j (n -+ o) dt
1--Z
Here
n="% 1-=££; E= Z=£:Qs=———-——AHS ;
e — ¢, R R R R(AH, — AH,)
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m, = Am, . Q= AH,  ny— G
RAm, AH; — AH, C;— Gy

§2. Kinetics of Diffusion-Layer Growth

In the quasistationary approximation (877/87= 0) it is easy to obtain
K* (1 _ n)

- s 2.1
(—2i(1— 2y~ 1)

n=0; 2

ne=1z——n & (2.2)
Z—Din(l—2)
for the growth rate of the dimensionless film thickness Z from the system (1.10)-(1.14) for different geometric
shapes, where K= nai is the film growth-ratefactor in the quasistationary mode.

Processing the results of the numerical solution of the initial nonstationary system of equations showed
that in the general case the interaction law can be represented for the three shapes under consideration in the
form

Z = (D)9, (Z, ). (2.3)

Here (Z)* is the interaction law obtained in the quasistationary approximation [formulas (2.1) and (2.2)], and
onlZ, n) is a function taking account of the effect of nonstationarity in the mass transfer through the reaction-
product film. Numerical computations yield for the function ¢p

0,226 2 A
Z, ) = | 1.04 — 2222 4+ —2_In(l—2)|. 2.4
Pn(Zy M) ( Vo, ) { + Vo n( )J (2.4)

For n=0, 1, and 2 the coefficient A, equals, respectively, A3=0, A;=0.153, A,=0.235.

Therefore, taking account of nonstationarity in the mass transfer in the case of plane symmetry (A,=0)
reduces just to a change in the magnitude of the constant in the kinetic law of film growth. An additional func-
tion, dependent on the film thickness Z, appears for the other shapes.

The error in computing the film growth rate Z by means of (2.3) and (2.4) is presented in Table 1 and it
does not exceed 5%. The formulas have been selected in the range 7 =0.75-10, which corresponds to a real
change in the parameter 5y resulting from an analysis of the metal—gas phase diagrams [9].

In the plane symmetry case, the time for the product film to reach the center (Z=1) of the specimen 'r;
results from (2.3) and (2.4) as
% 1

Tg = - (2.5)
2K .94 (o)
Processing the results of the numerical computation for the cylindrical and spherical symmetry yields
i =0.12 + 0.259 1, (2.6)
75 = 0.10 4 0.177n,. 2.7

The errorin (2.6) and (2.7) does not exceed 2%,.
Analyzing the results obtained, the following must be noted.

a) The dimensionless rate of film growth Z for a given geometric shape is a function of the single param-
eter py which is the relative width of the domain of phase homogeneity of the reaction product. As ypy—o (the
domain of homogeneity is small), we have 7 —0. In this case a quasistationary mode of progress of the phenom-
enon can be expected in this case for fixed values of the concentration on the film boundaries. As m—0 (large
domain of homogeneity), Z — » and the process is essentially nonstationary. Therefore, the possibility of a quasi~
stationary approximation is governed by the magnitude of the parameter 5. It can be assumed that for n> n(’,k
the film-growthprocessis quasistationary, while it is nonstationary for n < ns. The value of m’f is given by
starting from the magnitude of the accuracy required in computing Z. It follows from (2.3)-(2.4) with not more
than a 15% error in the rate Z that: n=0 p; =1.8, n=1 5 =3.2 (for values Z=<0.5), n=2 55 =4.1 (Z=<0.5).

) b) The geometric shape of the specimen exerts an essential influence on the form of the kinetic curves
Z(Z). The dependences Z(Z) are presented in Fig. 1 for the three shapes under consideration, obtained by inte-
grating the initial system of equations on an electronic computer. It is hence seen that if Z increases monotoni-
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TABLE 1. Comparison of Results from Calculation of |Z] on an
Electronic Computer and Using (2.1)-(2.4)

Parameters | Velocity values | Z| -
| f computer| formula calculations Errors in formulas, %
. ! e " z calcula-
¢ tions (2.1), (2.2) | (2.3), (2.4) (2.1) (2.3)
! 0,1 7,70 10 7.75 35 } 1
! 0,3 2,6 3,33 2,58 28 i 1
I 0,5 1,56 2,00 1,55 28 1 1
0 l07 1,1 1,43 1,11 30 | 1
P01 3,07 3,33 3,00 8,5 | 2
3 10,3 1,01 1,11 0,98 10 ! 2
i 0,5 0,61 0,66 0,60 82 | 2
10,7 0,43 0,48 0,428 16 | 0,5
0,1 8,02 10,5 8,00 29 0
i 0,3 2,95 4,01 2,93 36 0.5
0,5 2,03 2,89 2,00 42 1
0.7 1,78 2,78 ! 1,76 56 1
1 JE—
0,1 3,12 3,46 3,11 11 0,3
3 0,3 1,18 1,32 1,17 12 1
0,5 0,827 0,95 0,810 14,5 1
0,7 0,755 0,92 | 0,750 22,5 1
0,1 8,65 11,11 8,40 28 2,9
1 0,3 3,40 4,76 3,38 40 0,5
0,5 2,59 4,00 2,60 54 0,04
0 0,7 2,62 - 4,76 i 2,66 82 1,6
Lo, 3,35 3,70 3,29 10,5 2,0
3 | 03 1,37 1,59 1,36 16 0,7
i 0,5 1,09 1,33 1,09 20 0
i | 0,7 1,18 1,59 1,20 35 1,5
2
2
8

/
/ /
x 4 :7 n={ é

g 94 58z

7

Fig. 1. The dependence Z(Z)
for a plate, cylinder, and
sphere for the value npp=1.

cally for plane symmetry as Z grows (according to a parabolic law), then this quantity passes through a mini-
mum for a cylinder and a sphere. In the limit case Z —0 (thin films), the kinetic curves for all three shapes
are identical. An analysis of (2.3)-(2.4) shows that the limit values of the film thickness Zx,for whichthe dif~
ference in the magnitudes of the rate 7 for the cylinder and sphere does not exceed 159 compared to the plate,
depend weakly on the parameter 7 and in the range n,=1-c, equal, respectively, n=1, Z4=0.30-0.26; n= 2,
Zx=0.17-0.13.

§3. Kinetics of Heat Liberation and Increase in Specimen Weight

In considering the regularities of heat liberation and the increase in specimen weight during reaction dif~
fusion, it is expedient to perform an analysis of the phenomena in the quasistationary approximation before
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a

Fig. 2. The dependence of Qg/Z on
Z for a plate, cylinder, and sphere
for Qy=3.5, np=1; solid lines cor~
respond to a computation using (3.2)
and (3.3) while the dashes corre~
spond to a computation on an elec~
tronic computer.

executing a numerical computation on the electronic computer. In the quasistationary approximation case, the
following results from (1.10)-(1.16):

a} For the rate of heat liberation Qs:

n—0 0,— 2%, (3.1)
2
n=1 Q,= ;_ fe, 2)Z, (3.2)
n=2 Q== h D2 (3.3)
b) for the rate of increase of specimen weight fIS:
n=0 T,— T2 (3.4)
2(1 +my)
1 .
n= = , L) Z, 3.5
s SRR Ti(a, Z) (3.5)
.- 1 .
n=2 I=— (e, 2)Z. (3.6)
3(1+m,)

For the cylinder and sphere, the functions f,(«, Z) here equal, respectively,

- ] 1 —Z , I —(1 —2Zp
h=2e( =2 T Tl — el —2)

f, = 3a(l ——Z)2+—2— 2z

The parameter is ¢ =Qy in the expression for the heat-liberation rate, while it is o= ny for the rate of specimen
weight gain.

It is seen from the relationships (3.1)-(3.6) that if the ratio of the rate of heat liberation (specimen weight
gain) and the film growth is a constant, then this ratio depends on the surface curvature for cylindrical and
spherical symmetry: as the film thickness Z grows, the rate of heat liberation (specimen weight gain) dimin-
ishes more rapidly than the film growth rate. The nature of this dependence is shown in Fig. 2, where the
results of a computation using (3.2) and (3.3) are compared with the data of a numerical integration on an
electronic computer. In the limit case Z — 0, the expressions for the heat liberation rate and the gain in speci-
men weight agree for cylindrical and spherical symmetry with the relationship for a plate, which are written
in dimensional form as

d(AH) _ 55 48 (3.7)
dt dr’




d{(Am) — db
— = Am——» N 3.
dt dt (3.8)
where AH=(AH, +AH,)/2; Am=[(c;+¢,)/2](A my/cy), i.e,, inthis case the resultant heat-liberation (weight gain)
rate corresponds to the arithmetic mean value of the thermal effect of the reaction (weight gain) within the
domain of phase homogeneity of the reaction products.

The results of a numerical computation of the initial system (1.10)-(1.16) on an electronic computer,
some of which are illustrated in Fig. 2, exhibited good accuracy for the relations (3.1)-(3.6).

Therefore, for plane symmetry the kinetic equation in the heat liberation (gain in specimen weight) cor-
responds to a parabolic type, while the change in the heat-liberation (weight gain) rate is described by the rela-
tions (3.2), (3.3), (3.5), (3.6), (2.3), and (2.4).

In conclusion, let us note that in an experimental study of the kinetics of diffusion-layer growthonbodies
of cylindrical and spherical symmetry, the universal kinetic information (independent of the characteristic size
of the specimen) holds only up to definite values of the relative film thickness (the limit values of the thickness
are presented in the text in the case of the cylinder and sphere). For thicker films, a passage to the limit to
the characteristic body dimension R —» should be performed in the kinetic equation established experimentally.

NOTATION

¢, nonmetal concentration in the film; c;, ¢, values of the concentration at the upper and lower boundaries
of the domain of product-film homogeneity; t, time; R, characteristic body dimension; r, coordinate of the
film—metal boundary; 6, film thickness; D, coefficient of diffusion; AH;, AH, heat of formation of one molar
volume of MeX,, on the upper and lower boundaries of the homogeneity domain; Am;, Am,, mass increments
corresponding %,o the nonmetal concentration in the film on the upper and lower boundaries of the homogeneity
domain.
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